skip to main content


Search for: All records

Creators/Authors contains: "Zhao, K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2025
  2. We interpret the Taylor–Green cellular vortex model in terms of the Kolmogorov length and velocity scales, in order to study the balance between aggregation and breakup of cohesive sediment in fine-scale turbulence. One-way coupled numerical simulations, which capture the effects of cohesive, lubrication and direct contact forces on the flocculation process, reproduce the non-monotonic relationship between the equilibrium floc size and shear rate observed in previous experiments. The one-way coupled results are confirmed by select two-way coupled simulations. Intermediate shear gives rise to the largest flocs, as it promotes preferential concentration of the primary particles without generating sufficiently strong turbulent stresses to break up the emerging aggregates. We find that the optimal intermediate shear rate increases for stronger cohesion and smaller particle-to-fluid density ratios, and we propose a simple model for the equilibrium floc size that agrees well with experimental data reported in the literature. 
    more » « less
    Free, publicly-accessible full text available June 25, 2024
  3. Abstract

    Geomagnetic storms are primarily driven by stream interaction regions (SIRs) and coronal mass ejections (CMEs). Since SIR and CME storms have different solar wind and magnetic field characteristics, the magnetospheric response may vary accordingly. Using FAST/TEAMS data, we investigate the variation of ionospheric O+and H+outflow as a function of geomagnetic storm phase during SIR and CME magnetic storms. The effects of storm size and solar EUV flux, including solar cycle and seasonal effects, on storm time ionospheric outflow, are also investigated. The results show that for both CME and SIR storms, the O+and H+fluences peak during the main phase, and then declines in the recovery phase. However, for CME storms, there is also significant increase during the initial phase. Because the outflow starts during the initial phase in CME storms, there is time for the O+to reach the plasma sheet before the start of the main phase. Since plasma is convected into the ring current from the plasma sheet during the main phase, this may explain why more O+is observed in the ring current during CME storms than during SIR storms. We also find that outflow fluence is higher for intense storms than moderate storms and is higher during solar maximum than solar minimum.

     
    more » « less
  4. null (Ed.)
    We investigate the dynamics of cohesive particles in homogeneous isotropic turbulence, based on one-way coupled simulations that include Stokes drag, lubrication, cohesive and direct contact forces. We observe a transient flocculation phase, followed by a statistically steady equilibrium phase. We analyse the temporal evolution of floc size and shape due to aggregation, breakage and deformation. Larger turbulent shear and weaker cohesive forces yield smaller elongated flocs. Flocculation proceeds most rapidly when the fluid and particle time scales are balanced and a suitably defined Stokes number is $O(1)$ . During the transient stage, cohesive forces of intermediate strength produce flocs of the largest size, as they are strong enough to cause aggregation, but not so strong as to pull the floc into a compact shape. Small Stokes numbers and weak turbulence delay the onset of the equilibrium stage. During equilibrium, stronger cohesive forces yield flocs of larger size. The equilibrium floc size distribution exhibits a preferred size that depends on the cohesive number. We observe that flocs are generally elongated by turbulent stresses before breakage. Flocs of size close to the Kolmogorov length scale preferentially align themselves with the intermediate strain direction and the vorticity vector. Flocs of smaller size tend to align themselves with the extensional strain direction. More generally, flocs are aligned with the strongest Lagrangian stretching direction. The Kolmogorov scale is seen to limit floc growth. We propose a new flocculation model with a variable fractal dimension that predicts the temporal evolution of the floc size and shape. 
    more » « less
  5. We propose a one-way coupled model that tracks individual primary particles in a conceptually simple cellular flow set-up to predict flocculation in turbulence. This computationally efficient model accounts for Stokes drag, lubrication, cohesive and direct contact forces on the primary spherical particles, and allows for a systematic simulation campaign that yields the transient mean floc size as a function of the governing dimensionless parameters. The simulations reproduce the growth of the cohesive flocs with time, and the emergence of a log-normal equilibrium distribution governed by the balance of aggregation and breakage. Flocculation proceeds most rapidly when the Stokes number of the primary particles is $O(1)$ . Results from this simple computational model are consistent with experimental observations, thus allowing us to propose a new analytical flocculation model that yields improved agreement with experimental data, especially during the transient stages. 
    more » « less